Abstract

CdS nanocrystallites and CdS- oxidized multiwalled carbon nanotubes (OMWCNT) composite were prepared by the solvothermal decomposition of a single-source molecular precursor, [Cd(pip.dtc)2] (pip.dtc = piperidine dithiocarbamate) in the presence of ethylene glycol. The as prepared CdS nanocrystallites and CdS-OMWCNT composite were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), UV-vis and Raman spectroscopy. Peak broadening in the XRD shows the formation of nanocrystalline CdS. TEM images of CdS nanocrystallites revealed the nearly spherical shape morphology of the particles, whereas, TEM images of composite showed the deposition of CdS nanocrystallites on the OMWCNT. EDX measurements matches with a 1:1 stoichiometry of Cd and S in CdS nanocrystallites, whereas, that of the composite showed the presence of Cd and S along with C. The vibrational properties of CdS nanocrystallites and their composite with OMWCNT were studied by Raman spectroscopy. Furthermore, the photocatalytic activity studies for the degradation of methylene blue under visible light irradiation using these materials were carried out. The surface area calculated using BET surface analyzer for CdS-OMWCNT composite (148.31 m2/g) was found to be more compared to bare CdS nanocrystallites (56.78 m2/g). The CdS-OMWCNT composite exhibited very good photocatalytic activity for the degradation of methylene blue under visible light irradiation which has been attributed to the increased surface area and synergistic effect in the composite compared to bare CdS nanocrystallites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call