Abstract

This paper concerns the rheological behavior of carboxymethylcelulloses(CMC) derived after one and two successive steps from different non-woodbleached cellulose pulps. CMC rheological characterization was achieved in0.1M NaCl solution, as a function of polymer concentration. Theevidence of a critical concentration (C* < 1 g/L) is discussedfromsteady shear and dynamic experiments. Rheological properties of the CMC werefound to depend on the cellulose source reactivity and on their degree ofsubstitution (DS). Higher molecular weight of initial cellulose was accompaniedby higher apparent intrinsic viscosity of the CMC produced. Depending on theCMCconcentration and on the degree of etherification, the system behaves as asolution or as a gel. In the case of abaca CMC sample, it is shown that afteronly one step of chemical modification and above a polymer concentration of20 g/L, the system behaves as a gel. The gel behavior was studied asafunction of temperature. In the temperature range from 25 to 45°C, the rheological behavior was found to remain almostconstant due to the existence of dispersed swollen aggregates. This unusualcharacteristic represents an advantage for applications such as oil recovery inthe petroleum industry, where viscosity of the recovered fluid should not diminishwith temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.