Abstract

In this study, a calcium-containing monomer, namely calcium lactate, was used for the synthesis of calcium-containing polyurethane for use in biomedical applications. Ether-based polyurethane was prepared using poly(oxytetramethylene)glycol, hexamethylene diisocyanate and calcium lactate. The prepared polymer was characterized by FTIR spectroscopy, which confirmed the presence of ionic linkages in the main chain. The thermal behavior, mechanical properties and viscosity of the polymer were studied, and the properties were compared with those of a control polyurethane sample without any metal. Because of ionic clustering in calcium lactate-incorporated ionic polyurethane, the mechanical properties and storage modulus were enhanced compared with those of nonionic polyurethane. The prepared calcium-containing polyurethane was evaluated for its blood compatibility. An evaluation of blood–material interactions revealed that the material is blood compatible and that the polymer does not induce any hemolysis. Segmented polyurethane prepared using a novel chain extender, calcium lactate along with polytetramethylene glycol and hexamethylene diisocyanate. The properties of the synthesized polyurethane compared with that of polyurethane without any calcium. The prepared polymer has high glass transition temperature and storage modulus, and has improved mechanical properties. In vitro hemocompatibility evaluation reveals that the material is blood compatible and does not induce any hemolysis to blood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.