Abstract

A method for the synthesis of bovine serum albumin (BSA) and copper (Cu0) nanocomposites is described. The synthesis is achieved by adding [100mM] hydrazine hydrate ((N2H4·H2O) to [10mM] copper sulfate (CuSO4·5H2O) solution in the presence of 0.02% bovine serum albumin at pH-10.0 and then heating the reaction mixture at 50°C for 3h. The process resulted into the formation of well-dispersed hexagonal Cu-BSA composite particles (size 5±2.5) μm consisting of embedded copper nanoparticles (Cu NPs). The nanoparticles embedded in composite were of average diameters of 28±12nm. Phase analysis, purity and morphology of the product have been studied by various physical techniques. Effect of various reaction parameters have been investigated on the morphology of synthesized nanocomposite. Efforts have been made to investigate the possible mechanism of Cu-BSA composite synthesis which gave it unique hexagonal morphology. The important characteristic of the reported method is that the highly stable Cu NPs present in composite were synthesized without any inert atmosphere which could be dried under vacuum and stored for long term use. The synthesized Cu NPs containing BSA composite material exhibited good antibacterial potential against both Gram positive and Gram negative bacterial strains. The minimum inhibitory concentration (MIC) of Cu NPs in the form Cu-BSA composite on Escherichia coli was calculated to be 50μgmL−1. Transmission electron microscopic and cytoplasmic leakage analysis revealed that Cu-BSA composite attached to the bacteria causing irreversible membrane damage leading to leakage of intracellular metabolites and eventually death of the organism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.