Abstract
Reversible addition–fragmentation chain transfer (RAFT) polymerization has emerged as one of the important living radical polymerization techniques. Herein, we report the polymerization of di(ethylene glycol) 2-ethylhexyl ether acrylate (DEHEA), a commercially-available monomer consisting of an amphiphilic side chain, via RAFT by using bis(2-propionic acid) trithiocarbonate as the chain transfer agent (CTA) and AIBN as the radical initiator, at 70 °C. The kinetics of DEHEA polymerization was also evaluated. Synthesis of well-defined ABA triblock copolymers consisting of poly(tert-butyl acrylate) (PtBA) or poly(octadecyl acrylate) (PODA) middle blocks were prepared from a PDEHEA macroCTA. By starting from a PtBA macroCTA, a BAB triblock copolymer with PDEHEA as the middle block was also readily prepared. These amphiphilic block copolymers with PDEHEA segments bearing unique amphiphilic side chains could potentially be used as the precursor components for construction of self-assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5420–5430, 2007
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.