Abstract
A series of neutral bis- and cationic tris-carbonyl complexes of the types cis-[M(κ3P,N,P-PNP)(CO)2Y] and [M(κ3P,N,P-PNP)(CO)3]+ was prepared by reacting [M(CO)5Y] (M = Mn, Re; Y = Cl or Br) with PNP pincer ligands derived from the 2,6-diaminopyridine, 2,6-dihydroxypyridine, and 2,6-lutidine scaffolds. With the most bulky ligand PNPNH-tBu, the cationic square-pyramidal 16e bis-carbonyl complex [Mn(PNPNH-tBu)(CO)2]+ was obtained. In contrast, in the case of rhenium, the 18e complex [Re(PNPNH-tBu)(CO)3]+ was formed. The dissociation of CO was studied by means of DFT calculation revealing in agreement with experimental findings that CO release from [M(κ3P,N,P-PNP)(CO)3]+ is in general endergonic, while for [Mn(κ3P,N,P-PNPNH-tBu)(CO)3]+, this process is thermodynamically favored. X-ray structures of representative complexes are provided.Graphical abstract
Highlights
In recent years, manganese pincer complexes, where the metal centers adopt a formal oxidation state of +I, have received considerable importance in the field of homogeneous catalysis [1–6]
We report on the synthesis and reactivity of a series of carbonyl Mn(I) and Re(I) PNP pincer complexes of the types cis-[M(κ3P,N,P-PNP)(CO)2Y] (Y = Cl or Br), [M(κ3P,N,P-PNP)(CO)3]+, and [M(κ3P,N,PPNP)(CO)2]+ derived from the 2,6-diaminopyridine, 2,6-dihydroxypyridine, and 2,6-lutidine scaffolds
We have prepared a series of coordinatively saturated neutral bis- and cationic tris-carbonyl complexes of the types cis-[M(κ3P,N,P-PNP)(CO)2Y] and [M(κ3P,N,P-PNP)(CO)3]+ by reacting [M(CO)5Y] (M = Mn, Re; Y = Cl or Br) with PNP pincer ligands derived from the 2,6-diaminopyridine, 2,6-dihydroxypyridine, and 2,6-lutidine scaffolds
Summary
Manganese pincer complexes, where the metal centers adopt a formal oxidation state of +I, have received considerable importance in the field of homogeneous catalysis [1–6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.