Abstract
Anion-exchange membranes containing pendant benzimidazolium groups were synthesized from polysulfone by chrolomethylation followed by nucleophilic substitution reaction with 1-methylbenzimidazole. The structures of the polymers were characterized by 1H-NMR and FTIR analysis. The resulting membranes showed high thermal stability below 200 °C. The values of water uptake and swelling degree increased with the ion-exchange capacity of the polymeric membrane. The ionic conductivity was measured by means of impedance spectroscopy in aqueous solution of potassium hydroxide (10−4−10−1 M). The results show not only a clear correlation between the membrane's electrochemical behavior with the electrolyte solution embedded in the membrane, but also with the degree of the polysulfone's chloromethylation.Thus, the ionic conductivity increased more than two orders of magnitude when the degree of chloromethylation increased from 40 to 140%. Benzimidazolium-functionalized polysulfones exhibited better thermal, mechanical, and electrochemical properties than the widely used polymeric membranes containing quaternary ammonium groups. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2363–2373
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.