Abstract

Bacterial cellulose (BC) was produced via the static fermentation process using G. xylinus. Cellulose and diethylaminoethyl cellulose (DEAEC) were converted to carboxymethyl cellulose (CMC) and carboxymethylated diethylaminoethyl cellulose (CMDEAEC) while to prepare the composites, two different methods were used: by either direct addition of the materials to the fermentation medium or addition of the materials after the fermentation process. Structural characteristics of composites were determined using instrumental techniques. Potential application of BC, BC/CMC, and BC/CMDEAEC in drug delivery system was examined using methylene blue (MB) as a model drug where the loading capacity and swelling ratio for the samples were as follows: BC/CMC > BC/CMDEAEC > BC. The result of the in-vitro study was in favor of the release behavior of BC/CMDEAEC composite. The MB loading data were fitted using Langmuir and Freundlich equations and kinetic behavior of the release was described by Higuchi and Korsmeyer-Peppas models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call