Abstract

Ni-Cu-Zn ferrites are well-known technological magnetic materials used for manufacturing of multilayer chip inductor and applications in various electrical devices. The work is focused on the persuade of substitutions and sintering additive B2O3 on structural, transport and electromagnetic properties of Ni-Cu-Zn ferrites. The composition Ni0.28Cu0.10Zn0.62Fe2O4 + x wt. % where x= 0.2 to 0.8 for V2O5 was prepared by using the solid state reaction technique sintered at 1200oC with 6 hours holding time. Lattice parameters of Ni0.28Cu0.10Zn0.62Fe2O4 + x wt. % Bi2O3 are slightly decrease with increase x content. The grain growth by increasing the additives Bi2O3 content inter diffusion as results after > 0.4wt. % Bi2O3 content abnormal grain growth. Curie temperature (Tc) decreases continuously with increase of doped Bi2O3 additives in ferrite samples. The magnetization process all the samples are soft magnetic behavior of magnetic materials. Initial permeability (µi) decreases with increasing doped Bi2O3 content in ferrite samples and hence the highest value of quality factor is found for x = 0.4 within the range 20 kHz to 2MHz. The µi shows the flat profile from 1 kHz to 4MHz indicating frequency stability for all the ferrite samples. The visible grain growth indicates the improved electromagnetic properties. DC resistivity decreases with increasing temperature shows the semiconducting nature of the sample. With increasing the frequency, the dielectric constant is found to decrease continuously and remain almost frequency independent at higher frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call