Abstract

In this research, hydrophilic molecularly imprinted microspheres (HMIPs) for azoxystrobin were successfully synthesized through precipitation polymerization. The adsorption capacities of HMIPs for azoxystrobin in water medium were higher than ordinary molecularly imprinted microspheres (MIPs), and HMIPs exhibited good hydrophilic properties. HMIPs and non-imprinted microspheres (HNIPs) were characterized by FT-IR, SEM, laser particle size analyzer and TGA. Comparing with HNIPs, azoxystrobin had a significant influence on morphologys and sizes of HMIPs. The Langmuir adsorption isotherm illustrated each binding site of HMIPs had the same adsorption capacity. The Lagergran pseudo-second-order kinetic model indicated the adsorption process between azoxystrobin and HMIPs was chemical adsorption. BET test illustrated HMIPs had bigger specific surface areas than HNIPs. Selective adsorption indicated that HMIPs had highly specific recognition of azoxystrobin. HMIPs successfully exhibited high selectivity and high hydrophilicity in water medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.