Abstract

Abstract This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate) (PET) fibers into useful products for the textile industry. PET fibers were glycolytically degraded by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst. The glycolysis product, bis(2-hydroxyethyl) terephthalate (BHET), was purified through repeated crystallization to get an average yield above 80%. Then, BHET was nitrated, reduced, and azotized to get diazonium salt. Finally, the produced diazonium salt was coupled with 1-(4-sulfophenyl)-3-methyl-5-pyrazolone to get azo dyestuff. The structures of BHET and azo dyestuff were identified by FTIR and 1 H NMR spectra and elemental analysis. Nylon filaments dyed by the synthesized azo dyestuff with the dye bath pH from 4.14 to 5.88 showed bright yellow color. The performances of the dyestuff were described with dye uptake, color fastness, K / S , L *, a *, b *, and Δ E * values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.