Abstract
Fast and effective diagnosis is the first step in monitoring the current coronavirus 2 (CoV-2) pandemic. Herein, we establish a simple and sensitive electrochemical assay using magnetic nanocomposite and DNA sandwich probes to rapidly quantify the CoV-2 nucleocapsid (N) gene down to the 0.37 fM level. This assay uses a pair of specific DNA probes. The capture probe is covalently conjugated to Au-decorated magnetic reduced graphene oxide (AMrGO) nanocomposite for efficiently capturing target RNA. In contrast, the detection probe is linked to peroxidase for signal amplification. The probes target the COV-2 gene, allowing for specific magnetic separation, enzymatic signal amplification, and subsequent generation of voltammetric current with a total assay time of 45 min. The developed biosensor has high selectivity and can discriminate non-specific gene sequences. Synthetic COV-2 N-gene can be detected efficiently in serum and saliva, while 1-bp mismatch gene yielded a low response. The performance of the genosensor was good in an extensive linear range of 5 aM–50 pM. For synthetic N-gene, we achieved the detection limit of 0.37, 0.33, and 0.19 fM in human saliva, urine, and serum. This simple, selective, and sensitive genosensor could have various genetics-based biosensing and diagnostic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.