Abstract

ABSTRACTTwo n‐type conjugated D‐A copolymers, P(TVT‐NDI) and P(FVF‐NDI) with thienylene‐vinylene‐thienylene (TVT) or furanylene‐vinylene‐furanylene (FVF) as donor (D) units and naphthalene diimide (NDI) as the acceptor (A) units, were synthesized by the Stille coupling copolymerization. The two polymers possess good solubility, high thermal stability, and broad absorption bands with absorption edges at 866 nm for P(TVT‐NDI) and 886 nm for P(FVF‐NDI). The LUMO energy levels of P(TVT‐NDI) and P(FVF‐NDI) are −3.80 eV and −3.76 eV respectively, so the two polymers are suitable for the application as acceptor in blending with most polymer donor in PSCs based on the energy level matching point of view. All polymer solar cells (all‐PSCs) were fabricated with P(TVT‐NDI) or P(FVF‐NDI) as acceptor and medium bandgap polymer J51 as donor for investigating the photovoltaic performance of the two n‐type conjugated polymer acceptors. And higher power conversion efficiency of 6.43% for P(TVT‐NDI) and 5.21% for P(FVF‐NDI) was obtained. The results indicate that arylenevinylenearylene–naphthalene diimide copolymer are promising polymer acceptor for all–PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1757–1764

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call