Abstract
Li6PS5X (X = Cl, Br, I) argyrodites possess high ionic conductivity but with rather scattered values due to various processing conditions. In this work, Li6PS5X solid electrolytes were prepared by solid-state sintering or mechanical alloying and optimized with or without excess Li2S. Solid-state sintering prefers excess Li2S, whereas mechanical alloying prefers stoichiometric Li2S to synthesize high-purity samples with high ionic conductivity. Solid-state sintering is also more suitable than mechanical milling for high ionic conductivity. Li6PS5Cl with the highest ionic conductivity among Li6PS5X was comprehensively characterized for electrochemical performance and air stability. MoS2/Li6PS5Cl all-solid-state batteries assembled with Li6PS5Cl-coated MoS2 as cathode and with Li6PS5Cl as solid electrolyte demonstrate high capacity and good cycling stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.