Abstract
Keeping in view the therapeutic important dietary fiber psyllium, herein this research report its potential has been explored for the formation of sterile hydrogel by high energy radiation induced copolymerization of arabinoxylan-poly bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) for use as drug delivery carrier. The polymeric network structure was characterized by 13C NMR, FTIR, TGA/DTG and DSC, XRD and AFM techniques. Release profile of a drug cefuroxime and best fit kinetic model were determined. The blood –polymer interaction, mucosal-polymer adhesion, antioxidant and mechanical properties were also evaluated. The radiation dose influenced the crosslink density and the mesh size of the hydrogel network. Release profile of a drug cefuroxime followed non-Fickian diffusion and best fitted to first order kinetic model. The grafted product was sterile, porous, antioxidant and mucoadhesive in nature and could be explored for controlled and sustained GIT drug delivery applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of biological macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.