Abstract
AbstractIn this study, 2-oxopropylmethacrylate-terminated poly(N-vinyl-2- pyrrolidone) is produced by cationic polymerization using HClO4 as an initiator. Termination (end capping) step is accomplished using 2- hydroxypropylmethacrylate (2HPMA) and the polymer product has different chain lengths of molecular weight averages ranging from 672 to 3049 g/mol. The study also synthesised amphipathic graft copolymers having hydrophobic poly(α- methylstyrene) as a backbone chain and hydrophilic poly(N-vinyl-2-pyrrolidone) (PVP) as side chains of various lengths. The copolymer synthesis was accomplished by free radical copolymerization of ω-oxopropylmethacrylate PVP in the presence of α-methyl styrene initiated with benzoyl peroxide. Measurements of the dynamic viscosity of the polymer solution (20% weight of macromonomers in ethanol) show that the viscosity is proportional to the average molecular weights M̅n . However, a reverse behaviour of the viscosity variation with regard to M̅n is observed for graft copolymer samples. The viscosity variation with respect to the graft copolymer mass must be due to steric effects, which are strongly pronounced in grafted copolymer chains. Appearance of the number of side chains attached to poly(α-methylstyrene) backbone reveals that the grafting reaction has occurred with good efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.