Abstract

The synthesis of a new cyclic carbonate monomer containing an allyl group was reported and its biodegradable amphiphilic block copolymer, poly(ethylene glycol)-block-poly(L-lactide-co-5-methyl-5-allyloxycarbonyl-propylene carbonate) [PEG-b-P(LA-co-MAC)] was synthesized by ring-opening polymerization (ROP) of L-lactide (LA) and 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) in the presence of poly (ethylene glycol) as a macroinitiator, with diethyl zinc as a catalyst. 13C NMR and 1H NMR were used for microstructure identification of the copolymers. The copolymer could form micelles in aqueous solution. The core of the micelles is built of the hydrophobic P(LA-co-MAC) chains, whereas the shell is set up by the hydrophilic PEG blocks. The micelles exhibited a homogeneous spherical morphology and unimodal size distribution. By using the cyclic carbonate monomer containing allyl side-groups, crosslinking of the PEG-b-P(LA-co-MAC) inner core was possible. The adhesion and spreading of ECV-304 cells on the copolymer were better than that on PLA films. Therefore, this biodegradable amphiphilic block copolymer is expected to be used as a biomaterial for drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5518–5528, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call