Abstract
The ammonium molybdophosphate–silica (AMP–SiO2) nano-composites were prepared by sol–gel method. The material synthesized was nanocrystalline, with average crystallite size of primary particles in the range of 10–25 nm. Small angle X-ray scattering showed presence of mass fractal aggregates made of small particles with rough pore boundaries. To realize the scope of using AMP–SiO2 nano-composites sorbent for removal of 137Cs from nuclear waste solutions, its adsorption characteristics for cesium were evaluated. It was found that the AMP–SiO2 nanocomposites were amenable for column operation, have high affinity for Cs, and possess very high adsorption capacity for Cs. From the perspective of separation of 137Cs from acidic radioactive waste solution, AMP–SiO2 nanocomposite holds significant promise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.