Abstract

Complexes of type [M(SAH)(OH 2)], where M is Mn(II),Co(II),Ni(II) and Cu(II), and SAH is the Schiff-base formed by condensation of salicylaldehyde (2 equiv.) and hydrazine (1 equiv.), bis(salicylaldiminato)hydrazone, or “2-({(z)-2-[(E)-1-(2-hydroxyphenyl)methylidene]hydrazono}methyl)phenol” have been prepared and characterized by elemental analysis, IR, UV–vis spectroscopy, conductometric, small area X-ray photoelectron spectroscopy and magnetic measurements. Elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The results indicate that the Schiff-base ligand coordinates through one azomethine nitrogen and two phenolic oxygen to the metal ions. Conductance measurements suggest the non-electrolytic nature of the complexes. The atomic concentration of the complexes showed the ratio of M:N:O = 1:2:3, that indicates that a water molecule was in the complex. Alumina-supported complexes “[M(SAH)OH 2]-Al 2O 3” catalyze the oxidation of cyclohexene with tert-butylhydroperoxide (TBHP). The major products of the reaction were 2-cyclohexene-1-ol, 2-cyclohexene-1-one and 2-cyclohexene-1-( tert-butylperoxy). The influence of solvent on the oxidation reaction has been studied. [M(SAH)OH 2]-Al 2O 3 shows significantly higher catalytic activity than other alumina-supported complexes. These catalysts can also be reused in the oxidation of cyclohexene several times. The new materials “[M(SAH)OH 2]-Al 2O 3” were characterized by several techniques: chemical analysis and spectroscopic methods (FT-IR, UV–vis, XRD, DRS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.