Abstract

Ag@polycarbazole coaxial nanocables (CNCs) have been successfully fabricated by the oxidative polymerization of carbazole over Ag nanowires (NWs) in acetonitrile. The morphology of Ag NWs and CNCs was studied by employing a transmission electron microscope (TEM) and a scanning electron microscope (SEM), which showed them to be a monodisperse material. The thickness of the polymer sheath was found to be 5 nm to 8 nm by observation under a high-resolution transmission electron microscope (HR-TEM). Energy dispersive X-ray spectroscopy (EDS), FT-IR and Raman measurements were used to characterize the polymer sheath, which demonstrated it to be a carbon material in polycarbazole form. X-ray photoelectron spectroscopy (XPS) was used for an interfacial study, which revealed that Ag surface atoms remained intact during polymer growth. In the end, zeta potential showed that the dispersion stability of Ag NWs increased due to polymer encapsulation, which is significant to obtain a particular alignment for anisotropic measurement of electrical conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call