Abstract

Ag/Ag3PO4 nanomaterial modified BiPO4 photocatalysts (Ag/Ag3PO4/BiPO4) were synthesized by sonochemical method. The BiPO4 and Ag/Ag3PO4/BiPO4 photocatalysts were characterized by XRD, UV–Vis DRS, Raman, and TEM analysis. The photocatalytic activity of the prepared heterostructures was studied through the photodegradation of methylene blue (MB) under visible-light irradiation (λ > 420 nm, 70 W/cm2). The photodegradation of MB was found to be follow pseudo-first-order kinetics. The antimicrobial activity of the prepared heterostructures has also been evaluated in the disinfection of pathogens (Escherichia coli and Staphylococcus aureus). The prepared Ag/Ag3PO4/BiPO4 photocatalysts displayed considerably higher photocatalytic activity (>99% degradation within 25 min and >99% disinfection within 20 min) than did pure BiPO4. This enhanced photocatalytic activity of the Ag/Ag3PO4/BiPO4 photocatalysts can be attributed to the high separation efficiency and low recombination rate of photogenerated electron–hole pairs, as well as the Ag+ ions release under visible light irradiation. The possible mechanism underlying the enhanced photocatalytic activities of the Ag/Ag3PO4/BiPO4 photocatalysts is also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.