Abstract

Monoclinic Li3V2(PO4)3 compound is gathering significant interest as cathode material for lithium-ion batteries at the moment because of its high theoretical capacity, good safety and low cost. However, it suffers from bad rate capability and short cycling performance duo to the intrinsic low electronic conductivity. Herein, we report a design of Li3V2(PO4)3 particles coated by conducting polymer PEDOT through a facile method. When the cell is tested between 3.0 and 4.3V, the core-shell Li3V2(PO4)3@PEDOT electrode delivers a capacity of 128.5mAhg−1 at 0.1C which is about 96.6% of the theoretical capacity. At a high rate of 8C, it can still maintain a capacity of 108.6mAhg−1 for over 15 cycles with capacity decay rate of only 0.049% per cycle. The impressive electrochemical performance could be attributed to the coated PEDOT layer which can provide a fast electronic connection. Therefore, it can be make a conclusion that the core-shell Li3V2(PO4)3@PEDOT composite is a promising cathode material for next-generation lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.