Abstract

The bacterial chemotaxis protein CheY is activated in vivo by the covalent phosphorylation of a single aspartate residue at position 57. However, this phosphate linkage is unstable (t1/2 approximately 20 s at room temperature), thereby precluding many biochemical analyses. Here we present a synthetic scheme to prepare an analog of CheY-phosphate (Che Y-P) with chemical stability of the phosphate linkage enhanced by several orders of magnitude relative to the native protein. Starting with CheY D57C, a site-specific mutant of CheY with a unique cysteine residue in place of the aspartate at position 57, two sequential disulfide exchange reactions were performed to form the final product 'CheY D57C-SPO3' with a thiophosphate moiety covalently bonded to the protein in a disulfide linkage. Mass spectral analysis showed that the desired analog was present at 70-80% of the total protein. The disulfide linkage had a t1/2 of 8 days at 4 degrees C. Biochemical characterization of CheY D57C-SPO3 included assessment of conformational properties using tryptophan fluorescence, evaluation of metal binding properties and measurement of binding interactions with the chemotaxis proteins CheZ and FliM. Despite possessing a phosphoryl group at a nearly identical location as native CheY-phosphate, the analog was unable to emulate CheY-phosphate function, thereby supporting the idea that there are very precise geometric requirements for successful CheY activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.