Abstract
Reconstructive surgery is a complex and demanding interdisciplinary field. One of the major challenges is the production of sizeable, implantable, inexpensive bioprostheses such as breast implants. In this study, porous hybrid hydrogels were fabricated by a combinatorial method using decellularized human placenta (dHplacenta) and silk fibroin. Histology was used to confirm the acellularity of the dHplacenta. The physio-chemical properties of the hydrogels were evaluated using SEM, FTIR, and rheological assays. The synthesized hydrogels exhibited a uniform 3-D microstructure with an interconnected porous network, and the hybrid hydrogels with a 30/70 ratio had improved mechanical properties compared to the other hydrogels. Hybrid hydrogels were also cultured with adipose-derived mesenchymal stem cells (ADSCs). Liposuction was used to obtain adipose tissue from patients, which was then characterized using flow cytometry and karyotyping. The results showed that CD34 and CD31 were downregulated, whereas CD105 and CD90 were upregulated in ADSCs, indicating a phenotype resembling to that of mesenchymal stem cells from the human bone marrow. Moreover, after re-cellularized hydrogel, the live/dead assay and SEM analysis confirmed that most viability and cellular expansion on the hydrogels contained higher ratios of dHplacenta (30/70) than the other two groups. All these findings recapitulated that the 30/70 dHplacenta/silk fibroin hydrogel can perform as an excellent substrate for breast tissue engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.