Abstract

In this work, we report a heterojunction formed by a PbS/CdS bilayer using the chemical bath deposition (CBD) technique because it is a relatively simple, fast, and low-cost technique; is permitted to obtain high-quality thin films (TFs); and also covers large areas. Some characterizations have been carried out to confirm the identity of the involved bilayer. For the cadmium sulfide (CdS) film, optical properties such as absorption, transmission, reflection, extinction coefficient, and refractive index were measured. Moreover, the bandgap was calculated, and morphology was obtained by scanning electron microscopy (SEM). Also, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) were performed for the synthesis of CdS films. On the other hand, for the synthesis of lead sulfide (PbS) films, we performed TEM, energy-dispersive spectroscopy, and XRD. A surface morphological SEM image of the PbS film synthesized was also taken. The multiheterojunction PbS/CdS bilayer was characterized by the current-voltage (I-V) curve, and the behavior of the bilayer was evaluated under the conditions of darkness and controlled fixed lighting, detecting a very slight photosensitivity of the complete diodic device through those measurements. The calculated bandgap for the CdS TF was E g = 2.55 eV, while after a chosen thermal annealing, the bandgap decreased to 2.38 eV. On the other hand, the PbS film presented a cubic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.