Abstract

Polyether ketone (PEK) plastics are linear thermoplastic polymers connected by at least one ether bond and at least one ketone bond on the aryl group. The reason for their excellent heat resistance, rigidity, and mechanical strength is that their main molecular chain contains plenty of aromatic rings and polar carbonyl groups, and their molecular chain presents a large rigidity and strong intermolecular force. In addition, the main chain contains a considerable number of ether bonds, resulting in a certain toughness. However, polyether ketone materials have the disadvantage of poor solubility because of their excellent rigidity. To improve the solubility of polyether ketone, the preparation method of a novel nitrogenous heterocyclic polyaromatic ether monomer, 2-(4-chlorophenyl)-2,3-dihydrophthalazine-1,4-dione (CDD), was proposed, and its activity of polymerization was studied. The average molecular weight of the poly(aryl ether ketone) containing a nitrogenous heterocyclic polyaromatic ether group obtained by self-polycondensation of CDD was 4.181 × 103 kg/mol, and the yield was 90.5%. In order to further explore the activity of monomers, novel copolymerized poly(aryl ether ketone) (PBCD) containing a nitrogenous heterocyclic polyaromatic ether structure was prepared by ternary copolymerization with 4,4-difluorobenzophenone (DFBP) and bisphenol fluorene (BHPF) with high activity. The average molecular weight of PBCD was 72.793 × 103 kg/mol, the molecular weight distribution was 2.344, and the yield was 88.1%. Fourier transform infrared spectroscopy (FT-IR) and 1H NMR were used to confirm the structure of the obtained polymer. Through thermogravimetric analysis (TGA), the determined weight loss temperature of 5% under nitrogen was higher than 500 °C, indicating excellent thermal stability. Compared with the solubility of the binary copolymer containing fluorenyl poly(aryl ether ketone) (PBD), the polymer showed reasonable solubility in selective solvents such as chloroform and N,N-dimethylacetamide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.