Abstract

Electroactive actuators based on conductive polymers currently have attracted a great deal of attention. In this study, a nanofibrous structure of polypyrrole (PPy) was used to fabricate an electroactive bending actuator. For this purpose, polyurethane/PPy (PU/PPy) nanofibrous bending actuator was fabricated through the combined use of electrospinning and in‐situ chemical polymerization. The response surface methodology (RSM) was considered to find the optimal electrospinning conditions for producing PU nanofibers with the minimum diameter. The in‐situ chemical polymerization method was then used to prepare a conductive layer of PPy on the surface of optimum electrospun nanofibers with p‐toluenesulfonate (pTS) as the dopant. The coated nanofibers were used in the fabrication of PU/PPy‐pTS nanofibrous bending actuator. The morphology and electrical, thermal, electrochemical, and electrochemomechanical properties of the fabricated actuator were investigated. By using optimum conditions of electrospinning, PU nanofibers were obtained with a diameter of 221 nm. The results showed that the produced PU/PPy‐pTS nanofibers enjoy good thermal stability and have an electrical conductivity of about 276.34 S/cm. The obtained cyclic voltammetric and dynamo‐voltammetric responses showed that the dominant mechanism of actuation in the fabricated PU/PPy‐pTS nanofibrous actuator is the exchange of perchlorate anions with a partial exchange of lithium cations in 1M lithium perchlorate electrolyte solution. The fabricated actuator was capable of undergoing 141° reversible angular displacement during a potential cycle. The results demonstrated that, given high porosity, large specific surface area, flexibility, and desirable electrical properties, PU/PPy nanofibrous electroactive actuator provides a lot of potential for developing artificial muscle applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call