Abstract

Increased interest in the area of metal phosphonate inorganic–organic frameworks is exemplified with a high range of applications and a rich synthetic and structural chemistry of these compounds. The synthesis and potential applications of a novel metal phosphonate, namely Cu(II) phenylvinylphosphonate (PVP) is described in this paper. Syntheses were performed starting from a 1:1 molar ratio of a Cu(NO3)2·6H2O or CuSO4·5H2O and 1-phenylvinylphosphonic acid under hydrothermal conditions at pH values ranging between 2.8 and 3.1. The influence of different counterion for the copper salt used as the Cu(II) source on the structure and crystallinity of the final product was studied. The obtained copper(II) phenylvinylphosphonate compounds were characterized by X-ray powder diffraction, FT-IR spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectrometry (EDAX). A possible crystal structure for the copper (II) phenylvinylphosphonate products is proposed using semiempirical approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call