Abstract

Poly(2-hydroxyethylmethacrylate) [poly(HEMA)] is a widely used biomaterial which does not allow cell adhesion and growth on its surface, limiting its use in biomedical applications in which cell cohesion is detrimental. We have prepared a poly(HEMA)-gelatin composite hydrogel using a sequential interpenetrating polymer network technique. The properties of this material were compared with poly(HEMA) freeze-dried sponges in terms of morphology, mechanical properties and biocompatibility. Moreover, in vivo biocompatibility experiments highlighted the occurrence of cellular interactions on the surface of the poly(HEMA)-gelatin interpenetrating polymer network, which are usually absent when unmodified poly(HEMA) hydrogels are implanted in the same host organism. These tests also showed a progressive gelatin degradation from the surface to the bulk of the poly(HEMA)-gelatin specimens during short-term (7 d) implantation. Finally, in vitro tests confirmed an improved ability of this composite to scaffold for the cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.