Abstract

A new hyperbranched organic–inorganic hybrid electrolyte based on the use of 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride, CC) as the coupling core to couple with oligo(oxyalkylene)-amines, followed by condensation with (3-glycidoxypropyl)-trimethoxysilane (GLYMO) and complexed with LiClO 4, has been prepared and characterized. The Vogel–Tamman–Fulcher (VTF) like conductivity behavior is observed in the present organic–inorganic hybrid electrolytes with a maximum ionic conductivity value of 4.4 × 10 −5 S cm −1 at 30 °C. Multinuclear NMR techniques are used to provide a microscopic view for the specific interaction between the polymer chains and Li + cations and their dynamic behaviors. The results of 2D 1H– 13C wide-line separation (WISE) and 7Li static line NMR width measurements divulge that the mobility of the 7Li cations is strongly related to a dynamic environment created by the polymer motion in the amorphous phase. The combined results of conductivity and 7Li pulse-gradient spin-echo (PGSE) NMR self-diffusion coefficient measurements reveal that the conductivity enhancement at low salt concentrations is mainly caused by the high mobility of the lithium cations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.