Abstract

The battery energy-storage industry is evolving rapidly so new battery components are needed with high stability and improved energy density, as well as enhanced safety. In this paper, results on new salts, safer degradation and good electrochemical performances are reported. Four organic anions for Li-salts were synthesized and their conductivity, viscosity and electrochemical potential window in EC/DEC (3/7) solutions were examined. These salts have high thermal stability and safer degradation products (compared to LiPF6 and Li-TFSI), which were identified by TGA-MS. Cyclic voltammetry measurements showed their electrochemical window and oxidation limits were at least 4.3 and 4.5 V vs Li/Li+ using a platinum and high surface area carbon material working electrode, respectively. The salts passivated the common aluminum current collector at 4.4 V vs Li/Li+ and without corrosion. The properties of one Li salts were evaluated in half cell configuration as a model system using lithium iron phosphate (LFP), lithium titanate oxide (LTO) and graphite as electrodes. The performance of the salt showed promising behavior in the model system, compared to benchmark salts such as LiPF6 and Li-TFSI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.