Abstract
Electronic structure theory predicts that, depending on the strength of the ligand field, either the quintet ((5)T2) or triplet ((3)T1) term states can be stabilized as the lowest-energy ligand-field excited state of low-spin octahedral d(6) transition-metal complexes. The (3)T1 state is anticipated for second- and third-row metal complexes and has been established for certain first-row compounds such as [Co(CN)6](3-), but in the case of the widely studied Fe(II) ion, only the (5)T2 state has ever been documented. Herein we report that 2,6-bis(2-carboxypyridyl)pyridine (dcpp), when bound to Fe(II), presents a sufficiently strong ligand field to Fe(II) such that the (5)T2/(3)T1 crossing point of the d(6) configuration is approached if not exceeded. The electrochemical and photophysical properties of [Fe(dcpp)2](2+), in addition to being of fundamental interest, may also have important implications for solar energy conversion strategies that seek to utilize earth-abundant components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.