Abstract

Tissue engineering (TE) and regenerative medicine offer strategies to improve damaged tissues by using scaffolds and cells. The use of collagen-based biomaterials in the field of TE has been intensively growing over the past decades. Mesenchymal stromal cells (MSCs) and dental pulp stem cells (DPSCs) are promising cell candidates for development of clinical composites. In this study, we proposed the development of a bovine collagen type I: chondroitin-6-sulphate (CG) scaffold, obtained from Uruguayan raw material (certified as free bovine spongiform encephalopathy), with CG crosslinking enhancement using different gamma radiation doses. Structural, biomechanical and chemical characteristics of the scaffolds were assessed by Scanning Electron Microscopy, axial tensile tests, FT-IR and Raman Spectroscopy, respectively. Once we selected the most appropriate scaffold for future use as a TE product, we studied the behavior of MSCs and DPSCs cultured on the scaffold by cytotoxicity, proliferation and differentiation assays. Among the diverse porous scaffolds obtained, the one with the most adequate properties was the one exposed to 15kGy of gamma radiation. This radiation dose contributed to the crosslinking of molecules, to the formation of new bonds and/or to the reorganization of the collagen fibers. The selected scaffold was non-cytotoxic for the tested cells and a suitable substrate for cell proliferation. Furthermore, the scaffold allowed MSCs differentiation to osteogenic, chondrogenic, and adipogenic lineages. Thus, this work shows a promising approach to the synthesis of a collagen-scaffold suitable for TE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.