Abstract

A new strategy for the design and construction of peptide fragments that can achieve defined, nativelike secondary structure is presented. The strategy is based upon the hypothesis that 'core elements' of a protein, synthesized in a single polypeptide molecule, will favor nativelike structure, and that by incorporating a cross-link, nativelike core structure will dominate the ensemble as the more extended conformations are excluded. 'Core elements' are the elements of packed secondary structure that contain the slowest exchanging backbone amide protons in the native protein. The 'core elements' in bovine pancreatic trypsin inhibitor (BPTI) are the two long strands of antiparallel beta-sheet (residues 18-24 and 29-35) and the small beta-bridge (residues 43-44). To test the design strategy, we synthesized an 'oxidized core module', which contains the antiparallel strands connected by a modified reverse turn (A27 replaced by D), a natural disulfide cross-link at the open end of the hairpin, and N- and C-termini blocking groups. A peptide with identical sequence but lacking the disulfide cross-link at the open end was used as the 'reduced core module' control. The conformational behavior of both peptides was examined using (1)H NMR spectroscopy. Chemical shift dispersion, chemical shift deviation from random coil values, sequential and long-range NOEs, and H/D amide exchange rates were compared for the two peptides. We conclude that the ensemble of oxidized and reduced core module conformations samples both nativelike 4:4 and non-native 3:5 beta-hairpin structure, and that the oxidized module samples nativelike structure for a greater fraction of the time than the reduced module.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.