Abstract

Transparent glass ceramics with embedded light-emitting nanocrystals show great potential as low-cost nanocomposite scintillators in comparison to single crystal and transparent ceramic scintillators. In this study, cubic structure BaGdF5:Tb nanocrystals embedded in an aluminosilicate glass matrix are reported for potential high performance MeV imaging applications. Scintillator samples with systematically varied compositions were prepared by a simple conventional melt-quenching method followed by annealing. Optical, structural and scintillation properties were characterized to guide the design and optimization of selected material systems, aiming at the development of a system with higher crystal volume and larger crystal size for improved luminosity. It is observed that enhanced scintillation performance was achieved by tuning the glass matrix composition and using GdF3 in the raw materials, which served as a nucleation agent. A 26% improvement in light output was observed from a BaGdF5:Tb glass ceramic with addition of GdF3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.