Abstract

In this paper, three-dimensional (3D) Cu 0.45 Mn 0.55 O 2 nanoflowers self-assembled by interconnecting dense stacked single-crystalline nanoplates have been prepared using the template-free hydrothermal growth method. The morphology, phase structure and composition of the as-prepared nanomaterial were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) with selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDX). FESEM and TEM analyses show that the size of 3D Cu 0.45 Mn 0.55 O 2 nanoflowers is in the range of 1–1.5 μm and the thickness of interconnected nanoplates is about 40 nm on the average. The photoluminescence (PL) spectra of the as-prepared Cu 0.45 Mn 0.55 O 2 nanostructures at room temperature exhibits prominent emission bands located in red–violet spectral region. Moreover, magnetic investigations revealed the weak ferromagnetic behavior of the as-prepared Cu 0.45 Mn 0.55 O 2 nanoflowers and reported for the first time using vibrating sample magnetometer (VSM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.