Abstract

Selective laser melting (SLM), one of the Laser Powder Bed Fusion (LPBF) additive manufacturing methods, has enabled the layered production of Ti6Al4V/316L layered samples, thanks to the layer-by-layer construction. Although 316L and Ti6Al4V are used in many engineering applications, their wear performance is limited. This study aims to improve the tribological and electrochemical properties of Ti6Al4V/316L layered samples. Thus, ZnO, TiO2 monolayer, composite, and ZnO/TiO2, TiO2/ZnO multilayer ceramic films on Ti6Al4V/316L layered surface sample, were coated via the sol-gel dip-coating process. The structural, morphological, and tribological properties of ZnO-TiO2 ceramic films were analyzed via x-ray diffractometer, Scanning Electron Microscopy (SEM), and 3D profilometer. The tribological properties of these coatings were examined using a reciprocating tribo-tester, and the electrochemical properties of samples were evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Structural and mechanical results indicated that ZnO and TiO2 films (monolayer, composite, and multilayer-coated) have higher surface roughness and hardness values than additively manufactured Ti6Al4V/316L layered models. Both single and multilayer ZnO and TiO2 ceramic-coated films improved the wear resistance of the Ti6Al4V/316L substrate. Also, The best tribological and corrosion resistance was acquired for the multilayer film (ZnO/TiO2) among all the coated models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call