Abstract

This study involved two separate projects, both of which explored the application of RAFT polymerisation for the synthesis of well-defined star polymer-peptide conjugates and developed hydrogels from synthesised star polymer conjugates. The first project aimed to develop an in situ forming hydrogel from star poly(N-(2hydroxypropyl)methacrylamide) (PHPMA) via covalent cross-linking, catalysed by Sortase A enzyme (SrtA). The use of SrtA as a cross-linking enzyme for hydrogel-based tissue engineering has been only reported previously by Broguiere et al., Arkenberg and Lin. 1,2 Both groups employed mutant enzymes with enhanced kinetics to achieve fast gelation whereas a wild type SrtA was employed in this work. Well defined star PHPMA (Ð<1.30) were successfully functionalised with SrtA-peptide substrates via a two-step synthesis consisting of an aminolysis and followed by a radical thiol-ene addition reaction. Unfortunately, cross-linking of 4-arm star PHPMA conjugations mediated by SrtA did not yield gelation which could be due to the slow kinetics of wild type SrtA. The second project focused on developing thermo-responsive hydrogels of the selfassembling peptide CFEFEFKFKK by doping the hydrogels with star (2-, 3-, and 4- arm) poly(N-isopropylacrylamide) (PNIPAM)/CFEFEFKFKK conjugates (C, cysteine; F, phenylalanine; E, glutamic acid; K, lysine). The work was based on a study by Maslovskis et al. who created the novel composite hydrogels containing FEFEFKFK peptide and linear PNIPAM-FEFEFKFK conjugates.3 Well-defined star PNIPAM (Ð<1.25) were modified via a three step synthesis consisting of an aminolysis, a vinylsulfone functionalisation, and finally Michael thiol-ene addition with CFEFEFKFK. The doping was found to introduce thermoresponsiveness to the peptide hydrogels with a lower critical solution temperature (LCST) around 36 °C. This suggested that the hydrogels a potential application in human body. The hydrogels doped with 3-arm conjugate 46 kDa, 4-arm conjugate 17 kDa, or 2-arm conjugate 4 kDa exhibited higher elasticity. This indicated that the peptides on the conjugates took part in the self-assembly with the free peptides and that the polymer chains anchored and interacted with the peptide fibres through hydrogen bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call