Abstract

Expanded polystyrene (EPS) foam waste (white pollutant) was utilised for the synthesis of novel chelating resin i.e. EPS-N = N-α-Benzoin oxime (EPS-N = N-Box). The synthesised resin was characterised by FT-IR spectroscopy, elemental analysis, and thermogravimetric analysis. A selective method for the preconcentration of Pb(II) ions on EPS-N = N-Box resin packed in mini-column was developed. The sorbed Pb(II) ions were eluted with 5.0 mL of 2.0 mol L−1 HCl and determined by microsample injection system coupled flame atomic absorption spectrometry (MIS-FAAS). The average recovery of Pb(II) ions was achieved 95.5% at optimum parameters such as pH 7, resin amount 400 mg, flow rates 1.0 mL min−1 (of eluent) and3.0 mL min−1 (of sample solution). The total saturation capacity of the resin, limit of detection (LOD) and limit of quantification (LOQ) of Pb(II) ions were found to be 30 mg g−1, 0.033 μg L−1 and 0.107 μg L−1, respectively with preconcentration factor of 300. The accuracy, selectivity and validation of the method was checked by analysis of sea water (BCR-403), wastewater (BCR-715) and Tibet soil (NCS DC-78302) as certified reference materials (CRMs). The proposed method was applied successfully for the trace determination of Pb(II) ions in aqueous samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.