Abstract
This paper deals with the development and potential application of a novel mixed ionic-electronic conductive anode composite comprised of copper and iron oxide based on gadolinium-doped ceria (CuO–Fe2O3/GDC) for solid-oxide fuel cell (SOFC). Synthesis of the nanocrystalline CuO–Fe2O3/GDC powders was carried out using a novel co-precipitation method based on ammonium tartrate as the precipitant in a mixed-cationic solution composed of Cu2+, Fe3+, Gd3+, and Ce3+. Thermal decomposition of the resultant precipitate after drying (at 55 °C) was investigated in a wide range of temperature (25–900 °C) using simultaneous DSC/TGA technique in air. The DSC/TGA results suggested the optimal calcination temperature of 500 °C for obtaining the nanocrystalline anode composite from the resultant precipitate. The synthesised CuO–Fe2O3/GDC samples were further characterised using XRD, dilatometry, FESEM, and EDX. Several single cells of SOFCs were fabricated in the anode-supported geometry using the synthesised CuO–Fe2O3/GDC composite as the anode, GDC/CuO composite as the electrolyte, and LSCF/GDC composite as the cathode layer. The fabricated cells were analysed using FESEM imaging and EIS analysis, where an equivalent circuit containing five R-CPE terms was used to interpret the EIS data. The module fitted well the impedance data and allowed for a detailed deconvolution of the total impedance spectra. The catalytic activity and uniformity of the synthesised nanocomposites was further evaluated using TPR analysis, demonstrating excellent activity at temperatures as low as 200 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.