Abstract
AbstractIn this work, the removal of a model antibiotic named ‘doxycycline’ by three‐layered double hydroxides (LDHs) such as Mg–Fe LDH, Mg–Al LDH and Mg–Al/MWCNT LDH was investigated. Almost full characterisation of the prepared LDHs before and after adsorption was conducted using X‐ray diffraction, Fourier‐transform infrared spectroscopy, zeta potential, Brunauer–Emmett–Teller used for detecting the surface area, high‐resolution transmission electron microscope (HRTEM) and field emission scanning electron microscope. The effect of different factors on doxycycline adsorption capacity was investigated. The removal percentages of doxycycline were 80, 82 and 92% by Mg–Fe LDH, Mg–Al LDH and Mg–Al/MWCNT LDH, respectively. These results were attributed to the difference in the pore volume and geometry between the different LDHs. The isothermal and kinetic models of adsorption were also studied. The kinetics of adsorption were described by the second‐order equation with a better fit showed by a high R2 value. Mathematically, the Langmuir and Freundlich models best fitted the equilibrium data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.