Abstract

Mixed matrix membranes (MMMs) were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) to chitosan (CS) polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials.

Highlights

  • The separation and capture of CO2 from flue gas is becoming important for greenhouse emission control and strong demand of more energy, cost-effective and environmentally friendly technologies are growing

  • The thermal decomposition of the ionic liquid (IL) occurs at 200 °C, which agrees with literature [23]

  • Regarding the CS-based membranes prepared in this work, the pristine CS membrane has almost the same decomposition temperature as the precursor chitosan powder (560 °C), which is increased to more than 620 °C upon introduction of ETS-10 inorganic particles, even at the low loading of 5 wt % used in this work

Read more

Summary

Introduction

The separation and capture of CO2 from flue gas is becoming important for greenhouse emission control and strong demand of more energy-, cost-effective and environmentally friendly technologies are growing. Membranes are usually classified as polymeric, inorganic, and, more recently, mixed matrix membranes (MMMs). Transport through a dense-polymeric membrane usually takes place through the solution-diffusion mechanism in three steps: (i) the selective component adsorbs in the membrane;. Commercial polymer membranes are relatively processed at low costs, but their limited resistance to high temperature, usual inadequacy to high flow rates, or sensitiveness to clogging by dust, there is an absence of economy of scale and low selectivity to CO2/N2 separation [2]. The transport mechanism depends usually on the pore size distribution of the selective layer and, there are several inorganic membranes commercially available for pervaporation and vapour permeation and liquid filtration processes, not yet for gas separation [3]. The reproducibility and fabrication cost is still a major challenge [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call