Abstract

We describe herein the synthesis of a series of multi-end functionalized poly(N-vinyl pyrrolidone) (PVP) additives bearing two or three C8F17 fluoroalkyl (CF) groups, designed as additives to modify surface properties. The PVP additives were prepared by reversible addition–fragmentation transfer (RAFT) polymerization, with end functionality imparted via the use of CF functionalized chain transfer agents (CTAs). The resulting PVP additives, when used in modest quantities dispersed in thin films of an unmodified PVP matrix significantly reduce the surface energy, rendering their surfaces more hydrophobic and lipophobic. This is achieved by virtue of the low surface energy of the pendant C8F17 end groups which cause the additive to spontaneously surface segregate during the spin coating process. The resulting thin films have been characterized by static contact angle measurements using dodecane as the contact fluid, and the impact of additive molecular weight, matrix molecular weight, the number of CF groups and additive concentration upon surface properties is reported herein. Significant increases in contact angle were observed with increasing additive concentration, up to a critical aggregation concentration (CAC). Increasing the number of CF groups (from 2 to 3); reducing additive molecular weight or increasing the matrix molecular weight, resulted in increased contact angles and hence surface lipophobicity. Rutherford backscattering (RBS) analysis was performed on films containing varying concentrations of additive, in order to quantitatively measure the near-surface fluorine concentration of these films. The results of these experiments were in excellent agreement with those obtained by contact angle analysis, confirming the surface activity and low surface energy of the additives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.