Abstract

We report on the electrospinning method to synthesize and characterise chitosan membranes reinforced by halloysite nanotubes (HNTs). The synthesis process addressed two levels of HNTs concentration, i.e., 2 and 5 wt.%. Tensile testing was carried out to determine the strength (σ), strain (ε) at σ and elastic modulus (E) of the membranes. Tensile test data revealed that the membranes reinforced with 5 wt.% HNTs yielded the highest E (0.153 ± 0.02 GPa) and strength (22.53 ± 8.57 MPa). Electron micrographs of the fractured surfaces showed uniform dispersions of HNTs in the chitosan matrix. Infrared spectra indicated interactions between chitosan and inner and outer surfaces of HNTs. Thermogravimetric analysis demonstrated an increase in thermal stability with the addition of HNTs. Membranes immersed in simulated body fluid system for 28 days revealed the formation of dense apatite blocks with the addition of HNTs. Surface roughness increased with the addition of HNTs resulted a rise in degree of contact angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.