Abstract

Dirac nodal line (DNL) semimetals are a novel class of topological materials in which the valence and conduction bands touch along lines in the reciprocal space, with linear dispersion. These materials attract a growing attention, but the experimental realizations for two-dimensional systems are sparse. This article reports the first experimental realization of a two-dimensional hexagonal monolayer Cu2Ge, grown by evaporation of Ge on a Cu(111) substrate. Through a combination of low-energy electron diffraction XPS and ARPES measurements, it is shown that the surface presents all characteristics expected from calculations for a free-standing Cu2Ge monolayer. More specifically, the preservation of the two concentric nodal lines around the Γ point indicates weak interactions between the Cu2Ge surface and its Cu(111) substrate, making it an ideal system for the study of DNL materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.