Abstract

Branched poly(ethylene terephthalate)s (PET) were synthesised with a variety of molar masses and with a large range of degree of branching by introduction of mono-, tri-(glycerol) and tetra-functional (pentaerythritol) comonomers to dimethyl terephthalate and ethylene glycol. The monofunctional alcohols, dodecanol and benzyl alcohol, were used as terminating agents to minimise gelation. The effect of various reaction parameters, such as percentage glycerol or pentaerythritol and polymerisation time, on limiting viscosity number [η] and weight average molar mass (Mw) were investigated. The thermal behaviour of branched PET was studied by differential scanning calorimetry; all samples showed a characteristic double endothermic melting peak and the glass transition temperature was not observed. Some branched PETs were subjected to solid-state polymerisation to increase the molar mass of previously prepared branched polymers. The solid-state polymerisation technique showed that the process not only promoted the molar mass but, more importantly, it increased the crystallinity of the polymer. Overall, the solid-state reaction rate was governed by initial molar mass, crystallinity, reaction temperature and time. © of SCI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.