Abstract

Noble metals can be ionized by electrochemical corrosion and transported by electrospray ionization. Mass spectrometry (MS) showed solvated metal ions as the main ionic constituent of the sprayed droplets. Collection of the electrospray plume on a surface yielded noble metal nanoparticles (NPs) under ambient conditions. The NPs were characterized by several techniques. Under typical conditions, capped-nanoparticle sizes averaged 2.2 nm for gold and 6.5 nm for silver. The gold nanoparticles showed high catalytic activity in the reduction of p-nitrophenol by NaBH4 . Efficient catalysis was also observed by simply directing the spray of solvated Au(+) onto the surface of an aqueous p-nitrophenol/NaBH4 mixture. Organometallic ions were generated by spiking ligands into the spray solvent: for example, Cu(I) bipyridine cations dominated the spray during Cu electrocorrosion in acetonitrile containing bipyridine. This organometallic reagent was shown to be effective in the radical polymerization of styrene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.