Abstract

Addition of tert-butylisocyanide or 2,6-dimethylphenylisocyanide to a solution of trialkylaluminum or trialkylgallium results in formation of complexes R(3)M·C≡N(t)Bu (M = Al, R = Me (1), Et (2), (i)Bu (3), (t)Bu (4); M = Ga, R = (t)Bu (9)) or R(3)M·C≡N(2,6-Me(2)C(6)H(3)) (M = Al, R = Me (5), Et (6), (i)Bu (7), (t)Bu (8); M = Ga, R = (t)Bu (10)), respectively. Complexes 1, 4, 5, and 8-10 are isolated as solids, whereas the triethylaluminum and triisobutylaluminum adducts 2, 3, 6, and 7 are viscous oils. Complexes 1-10 were characterized by NMR ((1)H, (13)C) and IR spectroscopies, and the molecular structures of 4, 5, and 8-10 were also determined by X-ray crystallography. The frequency of the C≡N stretch of the isocyanide increased by 58-91 cm(-1) upon complexation, consistent with coordination of the isocyanide as a σ donor. Enthalpies of complex formation for 1-10 were determined by isothermal titration calorimetry. Enthalpy data suggest the following order of decreasing Lewis acidity: (t)Bu(3)Al ≫ (i)Bu(3)Al ≥ Me(3)Al ≈ Et(3)Al ≫ (t)Bu(3)Ga. In the absence of oxygen and protic reagents, the reported complexes do not undergo insertion or elimination reactions upon heating their benzene-d(6) solutions to 80 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.