Abstract

AbstractA series of amphiphilic hydrogel tubules have been prepared by copolymerizing/crosslinking hydrophilic poly(dimethylacrylamide) segments with hydrophobic di‐, tri‐, and octamethacrylate‐telechelic polyisobutylene crosslinkers, and their elastic modulus and burst strength in the water‐swollen state were investigated. Because the burst characteristics of hydrogels have not yet been quantitatively investigated, equipment was designed and built to generate fundamental insight into the burst properties of thin‐walled (200–250 μm) narrow lumen (2–3 mm i.d.) water‐swollen tubules. The theory developed to describe quantitatively the inflation behavior of thin‐walled rubber tubules was adapted to treat our experimental observations. Changes in the burst strength, elastic modulus, and expansion during the inflation of hydrogel tubules were interpreted in terms of the molecular weight of the hydrophilic segments between crosslinking sites (Mc,hydrophilic), which in turn was calculated according to the rubber elasticity theory. According to these investigations, the burst strength of our water‐swollen amphiphilic tubules is in the 0.2–0.5 MPa range, which is sufficient for implantation and immunoisolatory applications. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2075–2084, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.