Abstract
The synthesis and biological properties of seven polyoxins (4-10) designed to avoid peptidase hydrolysis in Candida albicans are presented. Five dipeptidyl and two tripeptidyl polyoxin analogues were synthesized by coupling an amino acid active ester or azlactone to uracil polyoxin C (2) or polyoxin D (1), subsequent removal of the protecting group, and purification by preparative HPLC. A new and novel route for introducing an n-propyl group onto the alpha-amino group of peptides is reported. With the exception of a carboxamide derivative, 8, all analogues were resistant to hydrolysis by a cell extract or permeabilized cells of Candida. Chitin synthetase inhibition constants were determined for 4-10 and the KI values ranged from 7.15 X 10(-6) M for octanoyl-phenylalanyl-polyoxin D (10) to 1.06 X 10(-3) M for D-tryptophanyl-uracil polyoxin C (6). These novel polyoxins do not compete with the transport of either peptides or uridine into the cell. Millimolar concentrations of compounds 4-10 are required to inhibit growth, cause morphological alterations, or reduce the viability of C. albicans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.